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medical image segmentation:

* A novel Multi-scale Text-aware ViT-CNN Fusion methodology to 2. Multi-Axis Consistency Framework
boost segmentation accuracy. We propose the Multi-Axis Consistency framework:

* Soft-Hard Label Generation Module: Post-process model predictions.

* A Multi-Axis Consistency Learning module that capitalizes on | | b . T R
consistency regularizations for semi-supervised learning. * Voting Mechanism: Aggregate predictions from different sources to ortanal imaee Bacein s Ofdadlluses  esrala:

generate pseudo-label for supervision.

* See our paper for the baseline setting.
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